数控机床x轴出现这个报警怎么消?

在三菱CNC的硬件连接检查与设置执行完毕向系统送电后,显示器上的READY绿灯仍然不亮。而且在〔诊断〕――〔报警〕 画面上显示很多报警内容,让初次使用三菱CNC的调试工程师感到困惑。而且三菱CNC的参数多达700余种,哪些是开机时必须设置的呢?又如何解除故障报警呢?本文根据调试经验就上述问题作一说明,以期对调试工程师有所帮助。

1.1 基本参数的设置

原装系统开机后显示的是日文,为操作方便,先设置参数#1043=22(简体中文)。(有些系统如C64没有简体中文规格,则设置#1043=15繁体中文)。

设置#1138=1 (随参数号选择参数)即输入参数号后,屏幕立即切换到该参数画面。

以下是开机后必须设置的参数:

#1001――设定是单系统还是双系统以及PLC轴 的有无。

#1002――设定NC轴及PLC轴的轴数。

#1013――设定各轴的名称。

#1037――G代码体系与补偿类型

(该参数必须在执行#1060格式化前设置)

#1060 ――该参数特别重要。其功能是“执行系统启动的初始化”

功能有2:其一是根据#1001——-#1043的设定值进行参数的初始化。其意义是在#1001——-#1043中已经设置了NC轴数和主轴数,在设置了#1060后,各伺服轴和主轴的参数自动显示在屏幕上。否则不调出各伺服轴和主轴的参数。

其二是对加工程序和刀具补偿数据进行格式化。而输入标准固定循环。

三菱NC系统规定 的固定信号地址如下:

如果原点开关和限位开关占用的输入信号地址与系统规定的不同则必须通过设置参数来更改

#2073――设置原点信号地址

#2074――设置正限位信号地址

#2075――设置负限位信号地址

1.2伺服电机参数设置:

#2219――(位置编码器分辨率)

#2220=――(速度编码器分辨率)

#2225=―――(电机型号)

#2236――(所连接的回生制动电阻或电源单元型号)1.3与主轴有关的参数

当系统配有主轴时必须设置下列参数:

#1039――(设定系统有几个主轴);

#3024――(设定所连接的主轴类型

#3024=1.总线连接即伺服主轴)

#3024=2 模拟输出即变频主轴)

# #3025=2 (编码器反馈串联通信有效。显示主轴实际转速)

#3239――主轴伺服驱动器类型

#3240――主轴电机类型

#3241――所连接的制动单元或制动电阻类型

#6449=――PLC程序中的计数器,计时器生效。

#6450=――报警信息和操作信息生效。

#0――PLC程序通讯有效。

三菱NC的参数多达700个,不需要也不可能在开机时全部设定,而以上参数是开机后必须设定的。1.开机参数

1.1 基本参数的设置

原装系统开机后显示的是日文,为操作方便,先设置参数#1043=22(简体中文)。(有些系统如C64没有简体中文规格,则设置#1043=15繁体中文)。

设置#1138=1 (随参数号选择参数)即输入参数号后,屏幕立即切换到该参数画面。

以下是开机后必须设置的参数:

#1001――设定是单系统还是双系统以及PLC轴 的有无。

#1002――设定NC轴及PLC轴的轴数。

#1013――设定各轴的名称。

#1037――G代码体系与补偿类型

(该参数必须在执行#1060格式化前设置)

#1060 ――该参数特别重要。其功能是“执行系统启动的初始化”

功能有2:其一是根据#1001——-#1043的设定值进行参数的初始化。其意义是在#1001——-#1043中已经设置了NC轴数和主轴数,想学习UG编程可以加QQ群领取学习资料和课程,在设置了#1060后,各伺服轴和主轴的参数自动显示在屏幕上。否则不调出各伺服轴和主轴的参数。

其二是对加工程序和刀具补偿数据进行格式化。而输入标准固定循环。

三菱NC系统规定 的固定信号地址如下:

如果原点开关和限位开关占用的输入信号地址与系统规定的不同则必须通过设置参数来更改

#2073――设置原点信号地址

#2074――设置正限位信号地址

#2075――设置负限位信号地址

1.2伺服电机参数设置:

#2219――(位置编码器分辨率)

#2220=――(速度编码器分辨率)

#2225=―――(电机型号)

#2236――(所连接的回生制动电阻或电源单元型号)1.3与主轴有关的参数

当系统配有主轴时必须设置下列参数:

#1039――(设定系统有几个主轴);

#3024――(设定所连接的主轴类型

#3024=1.总线连接即伺服主轴)

#3024=2 模拟输出即变频主轴)

# #3025=2 (编码器反馈串联通信有效。显示主轴实际转速)

#3239――主轴伺服驱动器类型

#3240――主轴电机类型

#3241――所连接的制动单元或制动电阻类型

#6449=――PLC程序中的计数器,计时器生效。

#6450=――报警信息和操作信息生效。

#0――PLC程序通讯有效。

三菱NC的参数多达700个,不需要也不可能在开机时全部设定,而以上参数是开机后必须设定的。

2、开机后常见的故障报警及排除

开机后可能在[诊断]――[报警] 画面上显示很多故障报警,而且有些报警调试与实际现象并不相同 ,需要分析判断予以解除。

2.1 [M01 0006 XYZ]――这一故障报警表明某一轴或3轴全部超过硬极限。

现象:实际情况是各轴尚未运动并未碰上极限开关。

A. 各极限开关信号地址是按照系统规定连接,但接成了常开点,系统因此检测到了过行程故障。

处置:只需将极限开关接成了常闭点,该故障消除。

B. 各极限开关信号地址不是按照系统规定连接。

处置:设置参数#,#2075,#1226 ,将极限开关信号接成了常闭点。

处置:这表示开机后设定的伺服参数不对,要根据电机或编码器型号进行设置。

现象:实际情况是伺服驱动器已安装,为什么会出现这类报警?

1. 各连接电缆未插紧,将各电缆拔下后重新插紧。

2. 某条电缆有故障,更换电缆。

3. 上电顺序不对。应该先上伺服系统电,最后对控制器上电。

4.驱动器的轴号正确设定. 或终端插头未连接.

现象:实际情况是系统根本未有配备RI/O.而另一情况是系统确实配备了RI/O而且连接完成。但为何还会出现这种报警?

分析:● 上电顺序不对。先对控制器上电而后对RIO上电,结果造成控制器检测不到RIO.

●.主电缆CF10(控制器――基本I/O)连接不良。

2. 将CF10电缆重新插拔上紧。

3.检查对RI/O的供电电源。

2.5 [EMG LINE]――由于连接不当引起的急停故障

分析:可能是某连接电缆的故障也可能是连接故障。

处置:将各电缆重新插拔上紧。或将SH21电缆更换成R000

电缆。一般SH21电缆内有10根线,但对于C1型驱动器必须用R000型电缆。R000电缆必须是20根线全部接满。

2.6 [EMG SRV]――因为伺服系统故障出现的急停

1. SH21 电缆断线可能引起该故障。SH21电缆连接不良也可能出现该故障。

2.上电顺序不对也会出现该故障。

处置:更换SH21电缆并按正常顺序上电。

处置:监视PLC程序中引起的Y29F=ON原因,解除引起急停的故障。

检查控制器后面的“NCSYS ”旋钮是否=1”

在显示器上设定PLC=“RUN”。

在GX-D软件的通讯画面上执行“格式化PLC内存”后,重新传入PLC程序。

处置:输入PLC程序。

欢迎大家在评论处补充你认为文章中有解释不对或欠缺的部分,这样下一个阅读的人就会学到更多,你知道的正是大家需要的。。。

摘 要:阐述了FANUC系统数控机床410#、411#误差过大报警的工作原理,总结了出现上述报警的原因,并通过实例给出了排除此类故障的方法和步骤。

数控机床编码器、光栅尺、反馈电缆伺、服放大器、伺服电机或传动机构出现故障时往往系统会触发误差过大报警,如FANUC系统的410#报警和411#报警。

报警解释:①第n轴的停止位置偏差值超过参数1829的设定值。②在简易同步控制中,同步补偿量超过参数8325的设定值。

报警解释:第n轴移动时的位置偏差值超过参数1828的设定值。

如图1所示,在数控机床进行伺服控制的过程中,系统的移动指令经脉冲分配处理,进入误差寄存器,对误差寄存器的数值递增,通过伺服的速度回路以及电流回路,由伺服放大器驱动伺服电机转动,使安装在电机后面的增量式编码器发出数字脉冲,反馈到伺服放大器,通过FSSB光缆由进入误差寄存器,对误差寄存器的数值进行递减,正常情况下误差寄存器里的数值始终保持在一定范围以内,伺服停止时,误差寄存器的数值为0。如果移动指令或编码器反馈两者中有一个没有,就会造成误差寄存器里的绝对数值过大,在移动时,如果误差寄存器里的绝对数值>参数1828里设定的数值,机床就会出现411报警,在停止时如果误差寄存器里的绝对数值>参数1829里设定的数值,机床就会出现410报警。误差寄存器的数值可以在FANUC系统的诊断

图1 误差计数器的读数过程

通过以上分析可知,每当伺服使能接通,或者轴定位完成时,都要进行上述误差比较。当以上误差比较超值后,就会出现410#报警,即停止时的误差过大。当伺服轴执行插补指令时,指令值随时分配脉冲,反馈值也随时读入脉冲,误差计数器随时计算实际误差值。当指令值、反馈值其中之一不能正常工作时,均会导致误差计数器数值过大,即产生411#移动中误差多大报警。

那么哪些环节会导致上述两种情况的发生呢?通过维修记录的统计,多数情况下是发生在反馈环节上。另外机械过载、全闭环振荡等都容易导致上述报警的发生,现将典型情况归纳如下:①编码器损坏;②光栅尺放大器故障;③光栅尺脏或损坏;④反馈电缆损坏,断线、破皮等;⑤伺服放大器故障,包括驱动晶体管击穿、驱动电路故障、动力电缆断线虚接等;⑥伺服电机损坏,包括电机进油、进水、电机匝间断路等;⑦机械过载,包括导轨严重缺油,导轨损伤、丝杠损坏、丝杠两端轴承损坏,联轴器松动或损坏等。

实例1:某FANCU 0iTB数控系统半闭环控制数控车床,Z轴移动时出现411#报警。首先通过伺服诊断画面观察Z轴移动时的误差值。通过观察,发现Z轴低速移动时位置偏差数值尚未得到及时调整就出现了411#报警。这种现象是比较典型的指令与反馈不协调,有可能是反馈丢失脉冲,也有可能是负载过大而引起的误差过大。

由于是半闭环系统,所以反馈装置就是电动机后面的脉冲编码器,该机床使用FANCU 0iTB数控系统,并且X和Z轴均配置αi系列数字伺服电机,所以编码器的互换性好,并且比较方便,因此维修人员首先更换了两个轴的脉冲编码器。但是完成后故障依旧存在,初步排除了编码器问题。通过查线、测量,确认反馈电缆即连接也没有问题。视线转向机械部分,技术人员将电机与机床脱离,将电动机从联轴器上拆下,通电旋转电机,无报警,排除了数控系统和伺服电机故障。检查机械传动部分,使用扳手手动旋转丝杠,发现丝杠很沉,明显超出正常值,说明进给轴传动链存在机械故障,通过钳工检修,修复Z轴丝杠机械问题,重新安装电动机,机床工作正常。

实例2:某FANUC 0iMC系统半闭环立式数控铣床,Y轴解除急停开关后数秒随即产生410#报警。

410#报警是由于停止时误差过大引起的,一般也是由于反馈、驱动、机械这三种因素引起的。凡是这类误差过大的报警,首先要观察伺服运转(SV-TURN)画面。通过观察,发现松开急停开关后“位置偏差”数值快速加大,并出现报警,此时机床窜动一下并停止。

如何快速简易的判断位置编码器故障?可以先按下急停开关,用手动或借助工具使电动机转动。此时,如果SV-TURN画面中位置偏差也跟着变化,说明编码器没有问题。使用此方法,通过伺服诊断画面看到反馈脉冲良好,基本排除脉冲编码器及反馈环节的问题。经过仔细观察发现,通电时间不长,电动机温升可达60~70度。通过摇表测量,发现电动机线圈对地短路,更换电机后,机床工作正常。

在系统出现410#或411#报警的时候,要检查伺服放大器、编码器、伺服电机、伺服电机的动力电缆和编码器的反馈电缆、伺服轴的机械负载等方面的情况。

我要回帖

更多关于 数控机床x轴间隙大怎么处理 的文章